Algebra 1

Writing Equations of Lines Graphing Linear Equations

Geometry/Trig

Pythagorean Theorem

Special Right Triangles (30-60-90 and 45-45-90)

Right Triangle Trigonometry $S \frac{o}{h} C \frac{a}{h} T \frac{o}{a}$

Important Topics from Algebra II/Trigonometry

Solving Equations, Absolute Value Equations, and Inequalities

Operations with Radicals and Imaginary numbers

Solving Radical Equations

Quadratics

- -FACTORING
- -Solving for roots
- -Quadratic form, intercept form, vertex form
- -Completing the square

Properties of Exponents including Rational Exponents

Logarithms

- -Expanding and condensing
- -Logarithmic to exponential form and exponential to logarithmic form
- -Solving Logarithmic Equations
- -Graphing logarithms and exponential functions

Parent Graphs

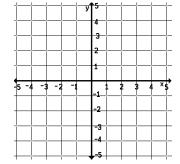
- -Domain and Range (interval notation)
- -Transformations
- -inverses

Operations with Functions (include restrictions where appropriate)

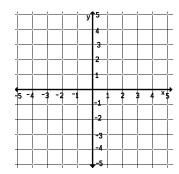
Piecewise Functions

Polynomials 2nd, 3rd, 4th, and 5th degree

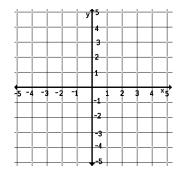
- -End behavior
- -Relative maximum and relative minimum
- -Intervals of increasing and decreasing
- -Rational Root Theorem
- -Synthetic division
- -Complex roots


Rational Expressions

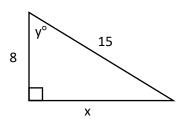
- -All operations $(+, -, x, \div)$
- -Graphing (asymptotes, holes, domain and range)


Write the equation of the line using the information given.

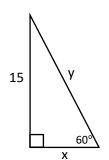
- 1. Through the points (-1, 3) and (2, -4).
- 2. Perpendicular to the line 2x 3y = 4 and through the point (4, -2).
- 3. Parallel to x = -1 and through the point (-2, 3).


4.
$$y = -\frac{1}{3}x$$

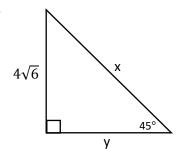
5.
$$y = 2$$



6.
$$-2x - 2y = 6$$



Solve for x and y.


7.

8.

9.

Factor each of the following completely.

10.
$$x^3 - x^2 - 6x$$

11.
$$3x^2 - 10x - 8$$

11.
$$3x^2 - 10x - 8$$
 12. $x^3 + 3x^2 - 4x - 12$

Solve each of the following for x.

13.
$$\frac{1}{3}x^3 = x$$

14.
$$x^4 - 16 = 0$$

14.
$$x^4 - 16 = 0$$
 15. $x^2 - 8x + 3 = 0$

16.
$$2x^2 - 21x + 49 = 0$$
 17. $\frac{x}{3} - \frac{x-2}{4} = 2$ 18. $\sqrt{x} - 2 = x - 8$

17.
$$\frac{x}{3} - \frac{x-2}{4} = 2$$

18.
$$\sqrt{x} - 2 = x - 8$$

Simplify each of the following.

19.
$$\sqrt{72}$$

20.
$$\sqrt{40} + \sqrt{90}$$

21.
$$\sqrt{50} - \sqrt{8}$$

21.
$$\sqrt{50} - \sqrt{8}$$
 22. $2\sqrt{3} \cdot 3\sqrt{6}$

23.
$$\frac{2}{\sqrt{2}}$$
 24. $\frac{3}{\sqrt{6}}$

24.
$$\frac{3}{\sqrt{6}}$$

25.
$$\frac{\sqrt{10}}{\sqrt{5}}$$

26.
$$\frac{\sqrt{30}}{\sqrt{45}}$$

27.
$$\sqrt{-10} \cdot \sqrt{-15}$$
 28. $\sqrt{-45}$

28.
$$\sqrt{-45}$$

29.
$$\frac{2}{3-i}$$

Write each exponential equation in logarithmic form.

30.
$$5^x = 625$$

31.
$$10^x = 1000$$
 32. $e^3 = 20.085$ 33. $u^v = w$

32.
$$e^3 = 20.085$$

33.
$$u^{v} = w$$

Rewrite each logarithmic equation in exponential form.

34.
$$\log_2 \frac{1}{8} = -3$$

35.
$$\ln 143 = x$$

36.
$$\log_4 64 = 3$$

34.
$$\log_2 \frac{1}{8} = -3$$
 35. $\ln 143 = x$ 36. $\log_4 64 = 3$ 37. $\log \frac{1}{100} = -2$

Evaluate without using a calculator.

38.
$$\log_x x^8 =$$

38.
$$\log_x x^8 =$$
 _____ 39. $\ln e^3 =$ _____

41.
$$e^{\ln 12} =$$
 _____ 42. $\log_{27} 3 =$ _____

42.
$$\log_{27} 3 =$$

43.
$$\log_3 81 =$$

Expand each logarithmic expression. Your answer may not contain any exponents or radicals.

44.
$$\log\left(\frac{x^3\sqrt{y+1}}{z^2}\right)$$

45.
$$\ln\left(\frac{y\sqrt{x}}{wz}\right)$$

Condense each logarithmic expression.

46.
$$3 \log x + 2 \log y + \frac{1}{2} \log z$$
 47. $3 \ln x + 2 \ln 5 - \ln(x+2)$

47.
$$3 \ln x + 2 \ln 5 - \ln(x+2)$$

Solve the exponential equations. Round any irrational answers to the nearest thousandths.

48.
$$3^{x-2} = 2^{x}$$

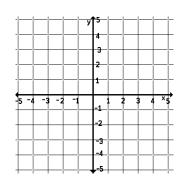
48.
$$3^{x-2} = 27$$
 49. $4(5^{x+2}) = 32$ 50. $3e^x + 5 = 24$

50.
$$3e^x + 5 = 24$$

51.
$$\log_4(x-1) = 2$$
 52. $\ln x = 2$

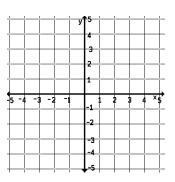
52.
$$\ln x = 2$$

53.
$$\log x = 6$$

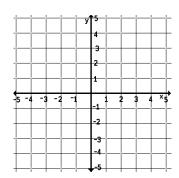

Application Problems.

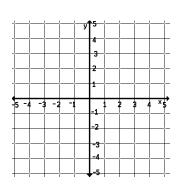
Simple Compound Interest:
$$A = P \left(1 + \frac{r}{n}\right)^{nt}$$

Continuous Compound Interest: $A = Pe^{rt}$


- 54. Emily plans to put her graduation money into an account and leave it there for 4 years while she goes to college. She receives \$1,050 in graduation money to college that she puts into an account that earns 4.25%. How much money will be in Emily's account at the end of four years if it is compounded...
- a.) Quarterly?
- b.) Monthly?
- c.) Continuously?
- d.) If the interest is compounded semi-annually, how long would it take for the balance to reach \$2,000? Round to the nearest hundredth of a year.

Graph each of the following without the aid of a graphing calculator.


55.
$$y = x^2 - 3x - 4$$


56.
$$y = x^3 + x^2 - x - 1$$

57.
$$y = 2|x - 3| - 2$$

$$58. \ y = \frac{2x-1}{x+1}$$

Find the inverse of the function. Graph both the function and its inverse. Confirm that the functions are inverses algebraically.

59.
$$f(x) = (x-2)^3 + 1$$

Perform the requested operations given the functions.

$$f(x) = x - 3$$

$$g(x) = x^2 - 9$$

60.
$$f(x) + g(x)$$

61.
$$f(x) - g(x)$$

62.
$$\frac{f(x)}{g(x)}$$

63.
$$\frac{g(x)}{f(x)}$$

64.
$$f(g(x))$$

65.
$$g(f(x))$$

66.
$$f(g(-2))$$

67.
$$f(x) \cdot g(x)$$